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Abstract. Fukuoka airport is the busiest single runway airport in Japan and the 

congestion has been increasing year by year. the COVID-19 pandemic has tem-

porarily eased the congestion, but it is expected to increase again after the pan-

demic. Excessive radar vector by air traffic controllers to maintain aircraft sepa-

ration during congestion causes economic and environmental losses due to in-

creased flight distances and times. We attempted to generate optimal trajectories 

in the approach control area of Fukuoka airport using a deep reinforcement learn-

ing method based on a centralized Deep Q Network (DQN). Wind information 

was considered in the trajectory optimization using Mesoscale Model (MSM) 

data from the Japan Meteorological Agency. As a result, the optimized trajectory 

was found to be useful because a radar vector reduction of 23.7% in distance and 

33.6% in flight time were attained compared with the recorded radar data pro-

vided as CARATS open data. The trajectories have the characteristics that all of 

the Ground speed (GS) of aircraft are made slower while directed straight to the 

intermediate fix (IF) after entering the approach control area. 

Keywords: Air traffic management, Fukuoka approach control area, Reduce 

radar vector, Deep reinforcement learning 

1 Introduction 

The number of air passengers in the world has been increasing in both domestic and 

international flights until the Covid-19 pandemic in 2020 as shown in Fig. 1. Peach 

Aviation, which is the first LCC (Low-Cost Carrier) in Japan, commenced its services 

in 2012. Since then, LCCs have rapidly expanded throughout Japan, leading to a sig-

nificant increase in air traffic flow. By 2018, the number of international air passengers 

per year exceeded 100 million as shown in Fig. 2. 
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Fig. 1. Number of air passengers in the world [1]. 

 

Fig. 2. Number of air passengers in Japan [2]. 
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This situation made air traffic control at Fukuoka Airport very challenging. Fukuoka 

Airport is the fourth largest airport in Japan in terms of the number of aircraft landings 

per year [3], while it has only one runway. A comparison of the number of aircraft 

landings per year at major airports in Japan and those divided by the number of runways 

of the corresponding airport are shown in Fig. 3 The figure reveals that Fukuoka Airport 

holds the top position in the number of aircraft landings per runway. In 2016, Fukuoka 

Airport was designated as a “congested airport” by the Civil Aviation Bureau (CAB) 

of the Ministry of Land, Infrastructure, Transport, and Tourism of Japan (MLIT). When 

the air traffic in the approach control area becomes congested and the appropriate sep-

aration among the multiple aircraft cannot be maintained, the controller often employs 

radar vector and holding which tends to lead to delays in arrival traffic. Fig. 4 shows an 

example of all flight trajectories entering the Fukuoka approach control area on one day 

(15th December 2019) extracted from the radar data (CARATS open data) which will 

be explained later. The trajectories which are considered to receive radar vector are 

shown in red, and the remaining are shown in blue. It is seen from the figure that most 

of all of the flights received radar vector. The excessive radar vector results in longer 

flight distance and time, which lead to economic and environmental loss. Consequently, 

reducing radar vector due to congestion at the approach control area becomes a crucial 

and pressing issue. 

 

 

Fig. 3. Trends in the number of aircraft landing at Japanese airports and the number of aircraft 

landing per runway [3]. 
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Fig. 4. All flight trajectories in the Fukuoka approach control area on 15th December 2019. 

There are three major changes in recent years that will affect the problem of congestion 

at Fukuoka Airport. Firstly, it is anticipated that air traffic flow will rebound, following 

the end of the global COVID-19 pandemic, and air demand is projected to reach or even 

surpass the levels seen in 2019 after 2025 [4]. This implies that the congestion problem 

at Fukuoka Airport, which had been temporarily alleviated due to the pandemic will 

resurface as a concern once again. The second point concerns the additional runway 

construction project at Fukuoka Airport [5]. Presently, the plans are underway to con-

struct an additional parallel runway. The operation using both runways is scheduled to 

commence in 2025. However, the new runway is planned to be constructed as a “close 

parallel runway” due to the limit of usable land area. Since simultaneous approaches 

and departures are not permitted in the current regulations in close parallel runways, its 

impact on the congestion reduction is deemed to be limited [6]. Therefore, it remains 

crucial to reduce congestion in the approach control area as in a single runway opera-

tion. The third point concerns the change in the approach chart. In July 2023, so-called 

“Point Merge” was introduced as one of the approach procedures at Fukuoka airport 

[7][8]. One advantage of this procedure is the reduction in workload of the air traffic 

controllers. It becomes easy for the controllers to maintain separations of the aircraft 

because the distances from the initial approach fix (IAF) which is the start waypoint of 

the final approach to all points on the “Point Merge” course are the same. However, 

from the perspective of the airline pilots, it is notorious for its rapid reduction in alti-

tude, and longer flight distance along the course at low airspeed which lead to increase 
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in flight time and fuel consumption, and for the difficulty in predicting the aircraft's 

arrival time. The current approach for the congestion relief in an approach control area 

in Japan mainly relies on the radar vector instructions of the air traffic controllers' ex-

perience rather than scientific approach such as optimization and the method on some 

theory. If radar vector can be optimized to reduce flight distance and time while ensur-

ing minimum and sufficient separation, it can lead to reduced congestions as well as 

flight time and fuel consumption. Given these considerations, our study aims to gener-

ate optimal trajectories that reduce excessive distance and time during radar vector in 

Fukuoka approach control area which is the busiest approach control area in single run-

way airports in Japan by using a deep reinforcement learning method． 

2 Approach control area of Fukuoka airport 

Fukuoka Airport is in urban region of Fukuoka City, Japan. It operates with a single 

runway (magnetic direction 160°/340°) with a domestic and an international terminal 

located on both sides of the runway respectively. RWY 16 (approach from the north) is 

used usually in southerly wind conditions, while RWY 34 (approach from the south) is 

used in northerly wind conditions. However, RWY 16 is actually used in large propor-

tions of operating time for noise abatement [9]. In Japanese air traffic system, approach 

control areas are usually defined as a cylinder of which radius is from 40 to 60 nm 

centered at the airfield and the maximum altitudes of 15,000 ft or less. Within this air-

space, the air traffic control for the approach control area and the terminal radar control 

are performed [10]. We have analyzed the congestion in the Fukuoka approach control 

area using CARATS (Collaborative Actions for Renovation of Air Traffic System) 

open data [12][13], which is a data set of aircraft radar data provided by MILT. The 

data includes aircraft positions, virtual callsigns, and aircraft types for scheduled instru-

ment flight rule (IFR) flights at every 10 seconds [11]. Our congestion analysis showed 

that an increase in radar vector leads to an increase in total flight time, which is associ-

ated with congestion periods when there are six or more landing aircraft in the Fukuoka 

approach control area at the same time. We therefore decided to optimize the trajecto-

ries of about 10 aircraft during this congestion period in 3D airspace with appropriate 

separation. The case we used here is when 9 aircraft were flying simultaneously in the 

approach control area in 30 minutes from 19:10 to 19:40 on May 14, 2016. The flight 

trajectories of all 9 aircraft from the initial positions in the Fukuoka approach control 

area to intermediate fix (IF) are shown in Fig. 5. The star marks(★) in the figure show 

the waypoints where ATC hand-offs from the neighboring sectors are considered to be 

performed. The time is the most continuous period of congestion among the data stored 

in the CARATS open data for 2016. All 9 aircraft use RWY16, which is the most fre-

quent operation in Fukuoka airport. The simulation covers the period from the moment 

when the aircraft enters the Fukuoka approach control area until it reaches the interme-

diate fix (IF), which is one of the fixes on an approach chart and leads to final approach 

for landing through final approach fix (FAF).  
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Fig. 5. The flight trajectories of all 9 aircraft from the initial positions in the Fukuoka approach 

control area to intermediate fix (IF). 

3 Previous studies 

There are several studies focusing on trajectory optimization in air traffic management. 

The concept of a self-sustaining air traffic control system was initially introduced by 

Hwinz Erzberger and colleagues at NASA in 2005 [14]. In Japan, there has been notable 

interest in the automation and high efficiency of air traffic control management, espe-

cially since around 2014, with research exploring subjects like arrival time management 

using dynamic programming [15]. The emergence of deep reinforcement learning has 

also gathered attention in the field of air traffic control management. In 2018, Marc 

Brittain et al. utilized hierarchical deep reinforcement learning algorithms to avoid col-

lisions with limited route changes and speed adjustments within an environment based 

on NASA's Sector 33 [16]. While this initial study was limited to handling simple prob-

lems, the application of deep reinforcement learning in air traffic management has been 

explored by various research groups and has gradually evolved to tackle more complex 

collision avoidance scenarios [17][18]. Notably, researchers at IBM and Amazon, led 

by Supriyo Ghosh, applied ensemble learning to reinforcement learning, using a dataset 

of 1668 aircraft, and successfully dealt with intricate challenges such as collision avoid-

ance and fuel cost variations [19]. These studies primarily focus on collision avoidance 

and enroute airspace control, neglecting the approach area. Generally, collision 
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avoidance in enroute airspace can be addressed by designing trajectories that enable 

aircraft with their different destinations to pass across with each other safely. Con-

versely, in the approach area, all aircraft have the same destination, necessitating the 

design of more time-sensitive and intricate trajectories. The study conducted by Supriyo 

Ghosh et al. [19] utilized a time step of 4 minutes, which is too long and may not be 

directly applicable to the problems in the approach area. In this region, each aircraft has 

a flight time of approximately 10 minutes, and the trajectory needs to be meticulously 

crafted within that timeframe. Currently, there are limited studies on the optimization 

of traffic flow in the approach control areas. In our previous studies, Ando employed 

genetic algorithms [20], and Igari utilized Q-learning [21]. However, both approaches 

presented certain difficulties. Genetic algorithms require extensive computation time, 

making them less suitable for real-time systems operating in complex and dynamic en-

vironments. On the other hand, Q-learning suffers from issues related to discretization 

of the state space, resulting in poor learning efficiency due to insufficient environment 

modeling. In this study, a deep reinforcement learning method is used for the optimi-

zation of multiple trajectories in approach control area incorporating wind information. 

The computation time using the model after learning is considerably shorter, and the 

state space is represented as continuous values, thereby allowing for more effective 

handling of complex problems. 

4 Method 

4.1 Overall Design 

The optimization algorithm employed in this study utilizes deep reinforcement learning 

based on a centralized Deep Q network (DQN). To construct the simulation environ-

ment of the 3-D flight trajectories of multiple aircraft in the Fukuoka approach control 

area considering winds aloft. An object-oriented architecture was implemented using 

Python 3. Fig. 6 shows the Overall system design. The simulation environment includes 

three classes: "aircraft class," "controller class," and "DQN agent class,". Throughout 

the process, the "Aircraft" instance stores the information of individual aircraft, and the 

"Controller" instance extracts the “State” from the "Aircraft" instance and provides it 

to the "DQN Agent" instance. For the sake of maintaining separation among multiple 

aircraft, the neural network is partitioned into two parts; one is for the position in a 

horizontal plane and the other is for altitude. The "DQN Agent" instance receives 

“State” and utilizes it in the internal neural network to generate an “Action”. This “Ac-

tion” is then passed to the "Controller" instance for the determination of the appropriate 

next change of true air speed (TAS), heading, and pressure altitude of an aircraft. The 

time step of the 3-D flight simulation of the aircraft as a point mass is 5 seconds, and 

during the simulation, the current “State”, future “State”, “Action”, and subsequent 

“Rewards” are accumulated and learned by the neural network until the aircraft arrives 

at intermediate fix (IF). By leveraging rewards over 3000 iterations, the learning pro-

cess generates trajectories of multiple aircraft that effectively reduce the time and the 

distance of radar vector, while maintaining proper separation as guided by the neural 

network. 
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Fig. 6. Overall system design of the optimization. 

4.2 Aircraft Class 

The "Aircraft Class" encompasses essential information of each aircraft, including lat-

itude, longitude, pressure altitude, true air speed (TAS), heading, time of entry into the 

approach control area, and the order of entry into the approach control area. The "Air-

craft Class" receives additional information from the "Controller Class," such as “in-

structed TAS”, “instructed pressure altitude”, and “instructed heading “as shown in Fig. 

7. which shows the flow of changing the actual information from the instructions. The 

airspeed in real air traffic communications (ATC) is instructed by indicated airspeed 

(IAS), but true airspeed is used in this study for the convenience of the calculation. The 

latitudes, longitudes, pressure altitudes, and ground speeds of the nine aircraft contained 

in CARATS open data mentioned previously at the boundary of the Fukuoka approach 

control area were used as the initial values of the nine aircraft. An instance of each 

aircraft is created using the "Aircraft Class" at the time of entry to the Fukuoka approach 

control area. 
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Fig. 7. Flow of changing the actual information from the instructions 

The "Aircraft Class" has several “methods”. The “Acceleration and deceleration 

method” changes true airspeed (TASn) at step n to the extent that the speed constraint is 

satisfied to instructed 𝑇𝐴𝑆,𝑛+1 as shown in Equation (1). 

 

{
  
 

  
 

𝑇𝐴𝑆𝑛+1 = 𝑇𝐴𝑆𝑛 + 𝑎 × ∆𝑡 [𝑚/𝑠]

𝑎 = 1 (
|𝑇𝐴𝑆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝑇𝐴𝑆𝑛|

5
> 1) [𝑚/𝑠2]

𝑎 =
𝑇𝐴𝑆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝑇𝐴𝑆𝑛

5
 (
|𝑇𝐴𝑆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝑇𝐴𝑆𝑛|

5
≤ 0.51444) [𝑚/𝑠2]

∆𝑡 = 5 [𝑠]

(1) 

 

The parameter of 0.51444 (m/𝑠2) is the acceleration constraint. The reason for the half-

way value is that 1 (knot/s) was initially established as the threshold value, and it is 

debatable what value is appropriate. However, according to the BADA manual [22], 

the threshold value for acceleration established for aircraft safety is 2 (feet/𝑠2), or about 

0.6 (m/𝑠2), and 0.51444 (m/𝑠2) is not considered too large a risk for acceleration. It is 

important to note that this reinforcement learning method allows for constraints to be 

placed on the rate of descent, taking aircraft safety and comfort into consideration. 

The “updating heading, latitude, longitude method” changes heading angle λn, latitude 

latn, and longitude lonn as shown in Equation (2) to the extent that the heading angle 

constraint is satisfied. 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝜆𝑛+1 = 𝜆𝑛 + 𝑟1 × 𝑟2 × ∆𝑡 [°]

𝑟1 = +1 (𝜆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝜆𝑛 ≥ 0 𝑜𝑟 −180 > 𝜆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝜆𝑛 ≥ −360) [−]

𝑟1 = −1 (0 > 𝜆𝑖𝑛𝑠𝑡𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝜆𝑛 ≥ −180) [−]

𝑟2 = 2 (
|𝜆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝜆𝑛|

5
> 2) [

°

𝑠
]

𝑟2 =
|𝜆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝜆𝑛|

5
 (
|𝜆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 − 𝜆𝑛|

5
≤ 2) [

°

𝑠
]

∆𝑡 = 5 [𝑠]

𝑙𝑎𝑡𝑛+1 = 𝑙𝑎𝑡𝑛 +
(𝑇𝐴𝑆𝑛 × cos(𝜆𝑛+1) +𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑𝑆𝑜𝑢𝑡ℎ𝑇𝑜𝑁𝑜𝑟𝑡ℎ) × ∆𝑡 × 360

2𝜋 × 𝑅𝑎𝑑𝑖𝑢𝑠𝐸𝑎𝑟𝑡ℎ
 [°]

𝑙𝑜𝑛𝑛+1 = 𝑙𝑜𝑛𝑛 +
(𝑇𝐴𝑆𝑛 × sin(𝜆𝑛+1) +𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑𝑊𝑒𝑠𝑡𝑇𝑜𝐸𝑎𝑠𝑡) × ∆𝑡 × 360

2𝜋 × 𝑅𝑎𝑑𝑖𝑢𝑠𝐸𝑎𝑟𝑡ℎ × cos(𝑙𝑎𝑡𝑛)
 [°]

(2) 

 

The “updating altitude method” changes the pressure altitude Altn to the extent that the 

pressure altitude constraint is satisfied for the instructed altitude 𝐴𝑙𝑡𝑛+1 as in Equation 

(3). 

 

{
 
 
 
 

 
 
 
 

𝐴𝑙𝑡𝑛+1 = 𝐴𝑙𝑡𝑛 + 𝑑 × ∆𝑡 [𝑓𝑒𝑒𝑡]

𝑑 = −2000 (𝐴𝑙𝑡𝑛 − 𝐴𝑙𝑡𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 > 2000/60) [
𝑓𝑒𝑒𝑡

𝑠
]

𝑑 = −1000 (0 < 𝐴𝑙𝑡𝑛 − 𝐴𝑙𝑡𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 ≤ 2000/60) [
𝑓𝑒𝑒𝑡

𝑠
]

𝑑 = 0 (𝐴𝑙𝑡𝑛 − 𝐴𝑙𝑡𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑,𝑛 < 0) [
𝑓𝑒𝑒𝑡

𝑠
]

∆𝑡 = 5 [𝑠]

(3) 

 

The parameter of 2000/60 [feet/s] is a constraint on the rate of descent. What value is 

appropriate is a matter of debate. However, if we refer to the BADA PTF file [22], 2000 

(feet/min) is a typical effective rate of descent, and there is no danger of the effective 

rate being too large. It is important to note that this reinforcement learning method al-

lows for constraints to be placed on the rate of descent, taking aircraft safety and com-

fort into consideration. 

With these three equations, the TAS, heading, and pressure altitude change at each step 

as shown in Fig. 7. 

 

4.3 Wind Information 

Wind information contained in the grid point value (GPV) data which is the numerically 

predicted atmospheric data provided by the Japan Meteorological Agency's Mesoscale 

Model (MSM) was utilized for calculating the position of individual aircraft in the sim-

ulation. To obtain wind information which corresponds to that in the simulation time 

duration, 3-hourly GPV data was linearly interpolated timewise and spacewise and used 

for updating the heading, latitude, and longitude of an aircraft in the "Aircraft Class" 
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and served as the inputs to the neural network. Methods for linear interpolation of the 

GPV data have been developed in previous studies [23][24].  

 

4.4 DQN method 

This section describes the principles and applications of the DQN method. The problem 

setup of reinforcement learning is formulated as a Markov decision process [25] in 

which the agent sequentially determines its actions based on the state of the environ-

ment. Reinforcement learning is the learning of the best behavioral rules (optimal 

measures) in the environment by using the rewards obtained as a result of the action. 

The behavioral policy π is a probability distribution that returns an “Action” according 

to the state “State”, and this policy itself is treated as a variable in reinforcement learn-

ing [26]. The policy is learned with the goal of obtaining the optimal policy 𝜋∗ that 

maximizes the expected return 𝐸𝜋[𝑅0]. The expected return 𝐸𝜋[𝑅0] is the expected 

value of return 𝑅0 when the strategy is run with 𝜋. The revenue 𝑅0 is defined as in 

equation (4) [26]. 

 

𝑅0 = 𝑟(𝑠1, 𝑎1) + 𝛾𝑟(𝑠2, 𝑎2) + 𝛾
2𝑟(𝑠3, 𝑎3) + ⋯ =∑𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

(4) 

 

Where s is the “State”, a is the “Action”, 𝑟(𝑠, 𝑎) is the reward function that expresses 

how much “Action” a is worth in a certain “State”, and 𝛾 is the discount rate. The dis-

count rate is a positive number less than 1. A smaller discount rate means that the “Cur-

rent Reward” is more important, while a larger discount rate means that the “Future 

Reward” is more important. To obtain the optimal policy 𝜋∗, the value of the policy 

itself must be evaluated, and DQN uses the value function Q. The value function is the 

expected return from a given state/action pair, (𝑠, 𝑎) and is expressed as in Equation 

(5).  
 

𝑄(𝑠, 𝑎) = 𝐸[𝑅0|𝑠0 = 𝑠, 𝑎0 = 𝑎] (5) 
 

The value function Q makes the value function and measures to be updated [26]. There 

are two methods for updating the value function Q. One is the policy iteration method, 

in which the relationship between the policy and the value function is clarified for Equa-

tion (5), and then the policy 𝜋 is updated so that the expected return is always improved.  

The other is the value iteration method, which takes advantage of the sequential nature 

of the value function and repeatedly updates the value function Q so that it increases, 

resulting in the optimal policy 𝜋∗. DQN belongs to the value iteration method. The 

optimal value function 𝑄∗, which yields the optimal measure 𝜋∗, can be transformed 

using equation (5) as in equation (6)[26]. 

 

𝑄∗(𝑠𝑡 , 𝑎𝑡) = 𝐸
𝜋∗[𝑅0|𝑠0 = 𝑠𝑡 , 𝑎0 = 𝑎𝑡]

= 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾∑ 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)
𝑠𝑡+1,𝑎𝑡+1

𝑚𝑎𝑥𝑎𝑡+1𝑄
∗(𝑠𝑡+1, 𝑎𝑡+1)

(6) 
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Where 𝑝(𝑠′|𝑠, 𝑎) is the state transition probability from “State”: s to the “Next State”:  
𝑠′. The subscript t represents time, and the transitions in equation (6) are time-series 

transitions. That is, the optimal value function is affected by the later optimal value 

function in a time-series manner. This equation (6) is called the Bellman optimal equa-

tion [25], and the problem of the Markov decision process boils down to solving the 

Bellman optimal equation, that is, finding the optimal value function 𝑄∗. 
Consider solving this Bellman optimal equation. It is noteworthy that the optimal value 

function 𝑄∗ at the current time is determined by the combination of the optimal value 

function 𝑄∗ at the future time, as shown in equation (6). For example, in a simple maze 

problem where the goal must be reached within a certain number of times, the possible 

future time states are finite, so the Bellman optimal equation can be solved rigorously. 

This method is called dynamic programming [25]. However, in complex problems such 

as air traffic control management, the possible future time states are very complex. For 

example, if the fuel limit is not considered, as in the present case, a future state that is 

clearly not optimal but keeps circling forever can be a candidate, and the number of 

candidate future states increases cumulatively depending on the positional relationships 

of multiple aircraft. Since dynamic programming is not realistic in such cases, it is nec-

essary to solve the Bellman optimal equation in an approximate manner. This is the 

sample approximation [26] of the Bellman operator used in reinforcement learning. 

This means that the Bellman optimal equation is gradually solved by sampling the in-

formation of the learning environment little by little and reflecting the results in the 

value function Q by learning the rewards obtained by performing random action selec-

tion called search on the learning environment in reinforcement learning. This Bellman 

optimal operator is shown in Equation (7). 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾𝑚𝑎𝑥(𝑄(𝑠𝑡+1, 𝑎′))) (7) 

 

In this case, 𝛼 is the learning rate and is a positive number less than or equal to 1. If 𝛼 

is large, learning is faster and convergence is harder, and if 𝛼 is small, learning is 

slower, and convergence is easier. Q learning and DQN are learning methods that use 

this update rule to update the value function Q, converge the Q function to the optimal 

value function 𝑄∗, and obtain the optimal strategy 𝜋∗ [27]. 

To converge strictly to the optimal value function 𝑄∗ with this learning method, all 

possible states must be experienced to converge to the optimal value function. How-

ever, as mentioned above, it is impossible to experience all possible states in a complex 

problem such as air traffic control management. Therefore, in learning, it is important 

to strike a balance between search, in which actions are randomly selected to experience 

states that have never been experienced, and utilization, in which the action with the 

highest value function is selected to bring the value function Q close to the optimum 

using the states that have been experienced. To achieve this balance, the method of 

taking a random action with probability 𝜀 and selecting the action with the highest value 

function with probability (1- 𝜀) is called the epsilon-greedy method [27] and is used in 

many cases, including this simulation It is employed in many cases.  
The content of the value function Q is a two-dimensional table, the number of cases of 

“State” x the number of cases of “Action”. In the case of the air traffic control 
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management problem, the number of cases of “State” is the number of states of each 

aircraft multiplied by the number of aircraft, which is extremely large, so it is unrealistic 

to handle it as a two-dimensional table. Therefore, the value function Q itself is approx-

imated by Neural Network (NN). NN is a learning model that mimics the neural circuits 

of the brain and has a multilayered perceptron structure that takes an input, multiplies 

the weights together, calculates the sum, and returns an output [28]. It is known that 

this multilayer perceptron can approximate nonlinear functions because it can calculate 

multiple inputs with multiple weights and return an output, and by using this to approx-

imate the value function Q, DQN is a method to solve the problem of the number of 

cases of “State” to be large [29]. 

When the value function Q is functionally approximated by NN, there is a problem that 

parameter updates are affected by the most recent observations, resulting in a large bias 

in the estimates and difficulty in convergence. This is because the observed states, ac-

tions, and rewards are time series, so the states before and after are strongly correlated, 

and overlearning occurs with respect to this correlation. To avoid this situation, there is 

a method called experience replay [30], in which observed series data are stored in a 

Replay Buffer, and when estimating the value function Q, the data are randomly ex-

tracted from the Replay Buffer to reduce the effect of autocorrelation and learn. This 

method is also utilized in this simulation. 

In other words, to review the DQN flow in this simulation, the “Controller Class” cre-

ates “State” from the “Aircraft Class” and “Wind Data”. The NN is in the “DQN Agent 

class” and determines “Action” from “State” using the epsilon-greedy method. Equa-

tions (1) ~ (3) are used to update the Aircraft Class from action a. Once again, the 

“Controller Class” records the “State” of the next step, and then the “Reward” is passed 

from the learning environment. “State”, “Action”, the “State” of the next step, and “Re-

ward” are stored in the Replay Buffer, and the NN model is trained using experience 

replay. This process is repeated 3000 times with different rewards r as described below, 

which is the application method of DQN in this simulation. 

 

4.5 Controller Class 

The "Controller Class" contains several crucial parameters, including the azimuth from 

the Intermediate Fix (IF), the aircraft's TAS, the minimum distance of distances be-

tween the aircraft and the IF, the distances between all combinations of two aircraft and 

the east-west and north-south wind speed values at the current latitude, longitude, and 

pressure altitude of an aircraft. These parameters are used to determine the “State” 

which passes as the inputs to the neural network. This "State" is obtained by the "DQN 

Agent class", which is used to select the Action to obtain the maximum value when 

making the exploitation in the epsilon-greedy method. Currently, the neural network in 

the "DQN Agent class" functions as a value function Q. The neural network checks the 

"Reward" received from the environment and the "State" after the action, then updates 

the value function Q by equation (7). The "Controller Class" includes a method to de-

termine whether an aircraft has arrived at the IF or not. When an aircraft reaches the IF, 

its state changes from “Moving” to "Stopped" or "Arrived," and the aircraft is removed 

from the environment. The "Controller Class" also has a method to convert the “Action” 
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received from the neural network into “instructed TAS”, “instructed pressure altitude”, 

and “instructed heading” to the aircraft. In this simulation, we set four possible “in-

structed TAS” (200 knots, 225 knots, 275 knots, and 300 knots), six possible “instructed 

heading” (0°, 60°, 120°, 180°, 240°, and 300°), and six possible “instructed pressure 

altitude” (2100 feet, 4000 feet, 6000 feet, 8000 feet, 10000 feet, and 12000 feet). We 

intended to set these possible instructed values in order to make the learning process 

easier by making the “Action space” smaller. It may be thought that the possible in-

structed values shown above are too coarse, but by the binding conditions shown in Fig. 

6, the velocity changes only 5 m/s, the heading angle changes only 10 degrees, and the 

pressure altitude changes only every 100 meters per every 5 seconds respectively be-

cause the simulation progresses every 5 seconds. The “State space” is large enough to 

be applicable for practical situations because even real ATC instructions are not so fine.  

 

4.6 DQN Agent Class 

“State” is then passed to the neural network within the "DQN Agent Class," and actions 

are obtained as instructions of the “Controller Class." The "DQN Agent Class" is in-

stantiated twice, once as a neural network for the position in a horizontal plane and then 

for the altitude. The neural network configuration is 1024-256-128-action size. A batch 

size of 32 and a buffer size of 10000 are used. An empirical playback method is em-

ployed during training, with a learning rate of 0.05, and training is conducted using the 

Adam Optimizer [31]. 

 

4.7 Neural Network for horizontal position optimization 

The horizontal neural network takes “State” such as the azimuth from the Intermediate 

Fix (IF), the distance between the aircraft and the IF, the aircraft's TAS, the minimum 

distance of distances between the aircraft and the IF,  and the east-west and north-south 

wind speed values at the current latitude, longitude, and pressure altitude of an aircraft 

as inputs. The output for airspeed is one of 4 levels of “instructed TAS” and for heading 

is one of 6 levels of “instructed heading” for each time series. Therefore, the system's 

output consists of 24 patterns (4×6) of actions. Until the aircraft's arrive at the IF, the 

neural network learns through accumulated “Rewards” as shown in Table 1 for the first 

2,000 learning steps. 
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Table 1. “Reward” for the first 2000 steps in horizontal neural networks 

Goals to be achieved Condition for imposing “Reward” 

Compliance with mini-

mum aircraft separation 

when the minimum separa-

tion between the aircraft 

and other planes is within 5 

nm. 

Penalty of -15,000 points 

Compliance with speed 

limit when reaching IF 
when aircraft reach IF. |TAS at IF - 200 knots| × 20. 

Reduction of flight time 
No condition (imposed on 

all aircraft). 

Penalty of – (flight time (sec-

onds) × 20). 

 

This pre-learning phase prioritizes reaching the IF in the shortest possible time while 

de-emphasizing separations. For the subsequent 3,000 learning steps, the reward 

changes as shown in Table 2. 

Table 2. “Reward” for the subsequent 3000steps after 2000 steps in horizontal neural networks 

Goals to be achieved Condition for imposing “Reward” 

Compliance with mini-

mum aircraft separation 

when the minimum separa-

tion between the aircraft 

and other planes is within 5 

nm. 

Penalty of -30,000 points 

Compliance with speed 

limit when reaching IF 
when aircraft reach IF. |TAS at IF - 200 knots| × 20. 

Reduction of flight time 
No condition (imposed on 

all aircraft). 

Penalty of – (flight time (sec-

onds) × 10). 

 

The penalty of reduction of flight time was set to be smaller and the penalty of compliance 

with minimum aircraft separation was set to be larger than that of the pre-learning phase 

because in this learning phase, we are focusing on compliance with minimum aircraft sep-

aration and slowing down of the instructed TAS. 

 

4.8 Neural Network for altitude optimization 

The neural network takes “State” which is the same as the “State” for the neural net-

work for horizontal position optimization as inputs. As its output, it provides six levels 

for “instructed altitude” as its “Action”. Upon the aircraft's arrival at the IF, the neural 

network learns from the accumulated “Rewards” shown in Table 3. These reward val-

ues are used to ensure the altitude instructions for safer and more efficient during the 

approach phase. 
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Table 3. “Reward” for altitude optimization 

Goals to be achieved Condition for imposing “Reward” 

Keep appropriate altitude 
when the distance from the 

IF is 20 nm.  

Penalty of -10×|Altitude -

10000feet| points 

Keep appropriate altitude 
when the distance from the 

IF is 10 nm. 

Penalty of -10×|Altitude -

6000feet| points 

Keep appropriate altitude 
when the distance from the 

IF is 5 nm. 

Penalty of -10×|Altitude -

4000feet| points 

Keep appropriate altitude 
when the distance from the 

IF is 2.5 nm. 

Penalty of -10×|Altitude -

2000feet| points 

 

4.9 Computational Environment 

The computational environment used for this study consisted of Ubuntu 22.04 running 

on a Ryzen 5 5600G processor with an RTX 3090 GPU, 128GB of memory, and a 1TB 

SSD. Python 3.10.6 64-bit was the programming language used for implementation. 

The primary library utilized in this research was dezero, which is a library based on 

Chainer and incorporates PyTorch design principles. Additionally, we employed pygrib 

to handle GPV data, allowing for effective data management and analysis. 

5 Results 

The flight trajectories of the nine aircrafts in horizontal plane obtained by the DQN are 

shown as solid lines in Fig. 8 together with the trajectories of CARATS open data as 

broken lines.  
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Fig. 8. Generated trajectories in horizontal plane obtained by DQN. 

The trajectories of the same aircraft are shown in the same color. The resulting trajec-

tories are successfully generated in which the radar vector is minimized. From Fig. 8, 

it is evident that all optimized trajectories (solid lines) take almost direct paths to the 

Intermediate Fix (IF) while most of the aircraft om CARATS open data (broken lines) 

evidently received radar vector and their trajectories widely spread to offshore. Fig. 9 

shows time history of the distances to IF in generated trajectories by comparing the 

distances to IF in CARATS open data.  Fig. 10 shows time history of GS (Ground 

Speed) in generated trajectories and GS in CARATS open data. From Fig. 9 and Fig. 

10, we observe that all aircraft are heading straight to the IF without any radar vector 

and holding so that the distances to IF decrease uniformly. However, their true air 

speeds shown in Fig. 10 seem rapidly reduced to slower speeds than those observed in 

the CARATS open data. At Fukuoka approach control area, when there are six or more 

arriving aircraft, approach control is performed by two controllers. One instructs the 

first five and the other instructs the remaining aircraft. In such a situation, the air traffic 

controller in charge of the remaining aircraft is considered to issue radar vector instruc-

tions with ample separation to the aircraft instructed by the first controller. This ten-

dency could explain the considerable radar vector observed for aircraft #6, #7, #8 and 

#9 in Fig. 9 shown as the trajectories in CARATS open data. However, since DQN 

optimization employs a neural network that is shared across all 9 aircraft for learning, 

there is no need for excessive radar vectors as human controllers did. Instead, the min-

imum distance path can be generated, leading to a significant reduction in radar vector 
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distance for later arriving aircraft. Consequently, the radar vector distance is also 

greatly reduced for the aircraft arriving later in the sequence. In Figure 8, a reversed 

arriving order to IF against the entering order to the approach control area is seen for 

aircraft #1(solid brown) and aircraft #4(solid purple) in the DQN result, while air-

craft#1(broken brown) reached IF in advance of aircraft #4(broken purple) in CARATS 

open data as “First come, first served” basis.  Since the winds aloft predominantly blow 

from west to east in the Fukuoka approach control area, it is thought that the reduction 

in total flight time was performed by the DQN by accounting for the wind speed which 

makes the ground speed of the aircraft coming from the west (aircraft #4) faster than 

that coming from the east (aircraft #1). This observation suggests that sequencing arri-

val aircraft considering several factors including wind speed is better than the sequenc-

ing by “First come, first served” basis, as also highlighted in a previous study [32]. The 

efficiency of reducing the speed of all aircraft, as depicted in Figure 10, requires careful 

consideration. The reduction in total flight time and total flight distance were attained 

by slowing down all aircraft, but stall speed has to be considered in the future work, 

though the lowest speed attained here is not below typical stall speeds of airlines. 

 

 

Fig. 9. Time history of the distances to IF in generated trajectories. 
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Fig. 10. Time history of aircraft GS (ground speed). 

Fig. 11 shows the True Air Speed (TAS), Ground Speed (GS), Uwind (wind blowing 

from west to east) received by the aircraft, Vwind (wind blowing from south to north) 

received by the aircraft, and azimuth. Some may be concerned that the sudden drop in 

GS for aircraft #1, #3, #6, #7, #8, and #9 in Fig. 10 may be unrealistic. However, as can 

be seen in the red-circled area, there is no abrupt change in TAS or heading. Therefore, 

the change in GS of the aircraft is due to the strong influence of winds such as Uwind 

and Vwind. Aircraft #1, #3, #6, #7, #8, and #9 are coming from the east, as shown in 

Fig. 8. From a certain region, the Uwind strength increases from 10 m/s to 20 m/s, 

which may have slowed the aircraft's ground speed to a much lower value than the TAS. 

Thus, we can see that the simulation itself is performed under sufficiently realistic con-

straints. 
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Fig. 11. TAS, GS, Wind Speed and heading history of Aircraft7 obtained by DQN.  

 

Figure 12 shows time history of the altitude of the nine aircraft. It shows that the tra-

jectories that can be applicable to a real situation as a continuous descent were obtained, 

that is, almost consistent reduction in altitude which aligns with the intended trajectory 

were obtained. However, there are several parts to be improved in the result. For exam-

ple, some parts in the time history of altitudes exhibit discontinuities and uneven vari-

ations are seen. Additionally, the altitude in some parts violates minimum vectoring 

altitudes, which should be considered as well as the stall speeds in the further refine-

ment. 
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Fig. 12. Time history of the altitude obtained by DQN.  

 

Figure 13 shows the time history of the horizontal distances between the two aircraft 

(i.e., separation) of all combination in the approach control area before reaching IF.  

The separations between the combinations of all 9 aircraft is 36, but only those cases 

where the minimum separation is less than 30000m are shown for simplicity. It is seen 

from the figure that there is no violation regarding the separation limit of 5nm. We 

planned the reward to ensure a separation of no less than 5 nm (9260m) between the 

two aircraft by imposing substantial penalty. Thus, the intended objective of preserving 

adequate aircraft separation is effectively achieved. 
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Fig. 13. Aircraft-to-aircraft separation changes 

Figure 14 displays the comparison of the flight distances of the optimized flight trajec-

tories of all aircraft and the flight distances of the corresponding aircraft in CARATS 

open data. The flight distance of all aircraft was reduced in DQN results compared to 

those in CARATS open data. The cumulative flight distance covered within the ap-

proach control area of the nine aircraft is 497.6 nm (922km), while the cumulative dis-

tance obtained by the DQN trajectory optimization is 330.4nm (612km). Consequently, 

this trajectory optimization resulted in a remarkable 33.6% reduction in total flight dis-

tance compared to that in the CARATS open data. 
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Fig. 14. Comparison of the flight distances of the nine aircraft. 

Figure 15 shows the differences in flight time of the nine aircraft similarly comparing 

the flight time obtained by DQN and those in CARATS open data. The flight time of 

all aircraft except for the first aircraft was reduced in DQN results compared to those 

in CARATS open data. The total flight time within the approach control area of the 

nine aircraft in the CARATS open data is 7065 s, while the total flight time of the 

optimized trajectories by the DQN is 5390 s. This trajectory optimization resulted in a 

significant 23.7% reduction in total flight time compared to the CARATS open data in 

spite of the reduced airspeed explained earlier. 
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Fig. 15. Comparison of the flight times of the nine aircraft. 

 

Fig. 16 shows the variation of the total reward obtained by each aircraft during one 

epoch with respect to the horizontal NN. The horizontal axis is the epoch, and the ver-

tical axis is the total reward for the nine aircraft. Since the original data was too scat-

tered to show a clear trend, a low-pass filter was applied after taking a moving average 

of 1,000 data points. For the moving average, data up to +500 and data down to -499 

were added and divided by 1000. For the epochs between 3000 and 3500, which are 

necessary for the moving average, the data is prepared by learning up to 3500, and for 

the data below 0, the same value as 0 is inserted as a dummy. From Fig. 16, we can see 

that the learning of the NN in the horizontal direction progressed smoothly. 
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Fig. 16. Total Horizontal Reward for 9 Aircraft. 

 

Fig. 17 shows the change in the total reward obtained by each aircraft during one epoch 

with respect to the NN in the altitude direction. The horizontal axis is the epoch, and 

the vertical axis is the total reward for the nine aircraft. Since the original data was too 

scattered to understand the trend, a low-pass filter was applied after taking a moving 

average of 1000 times of data as in Fig. 16. Fig. 17 shows that the learning of the NN 

in the altitude direction progressed once, the performance of the model deteriorated, 

and the model learned again to reach equilibrium. In the state of equilibrium, as shown 

in Fig. 11, the direction of altitude seems to work, so the final performance of the model 

is not considered to be bad. As for the reason why, the learning did not progress uni-

formly, early convergence due to the simplicity of the problem itself and the occurrence 

of overlearning are suspected, so it may be necessary to consider learning methods such 

as early stopping [26] to keep the learning in a good state. 
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Fig. 17. Total Altitude Reward for 9 Aircraft. 

 

6 Conclusion 

We have attempted to generate optimal flight trajectories using DQN in the Fukuoka 

approach control area in the busiest time.  Leveraging deep reinforcement learning, we 

successfully generated highly efficient trajectories for multiple aircraft. These trajecto-

ries directed by the “AI controller” resulted in a great reduction of 33.6% in total flight 

distance and 23.7% in total flight time. Notably, these optimized trajectories exhibit 

characteristics of heading directly to the Intermediate Fix (IF) and reducing the airspeed 

of all aircraft, while ensuring a separation of more than 5 nm between aircraft. As a 

result, we have compelling evidence that deep reinforcement learning approaches are 

highly effective in alleviating congestion in the Fukuoka approach control area. The 

approach control area environment presents a significant level of complexity, and, to 

the best of the author's knowledge, this study represents the first successful utilization 

of deep reinforcement learning for congestion relief in the approach control area. Un-

like trajectories generated by conventional genetic algorithms and other methods, DQN 

can yield results promptly once the weights are determined, making this research po-

tentially valuable for effectively alleviating congestion in real-time systems in the fu-

ture. It is important that our ultimate objective is to reduce congestion in the real-world 
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scenario, but some of the factors were not fully considered in this simulation. To 

achieve this, we are going to work on developing a more realistic simulation environ-

ment by encompassing a broader range of supported cases and incorporating real-world 

constraints, including aircraft characteristics and the characteristics of the airspace, and 

on designing compensation strategies and enhancing models, such as reward clipping 

and optimizing neural network structures as the future work. By undertaking these ef-

forts, the gap between simulation and real-world implementation can be bridged, and it 

will ultimately contribute to the development of more efficient and practical air traffic 

control systems in real-time environments. 
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