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Abstract. The economy of aircraft has received more and more attention, and 

the influence of the constant viscosity assumption in discrete adjoint system on 

the optimization would no longer be ignored. In this paper, we studied the in-

fluence of constant viscosity assumption on the stability of the adjoint equation 

and gradient accuracy. In the viscosity coefficient variation, the laminar viscosi-

ty was treated by the Sutherland criterion and the turbulence viscosity was stud-

ied by the SA and SST turbulence model, respectively. The ONERA M6 case 

was adopted to make comparisons of the convergence history of the adjoint 

equation and the gradient accuracy. The convergence history showed that the 

viscosity coefficient variation did not significantly affect the stability of the ad-

joint equation. The gradient variation due to the viscosity coefficient variation 

at the shock wave separation region was very distinct from the shock-free re-

gion, indicating that the viscosity variation could not be ignored in the design 

problems with large viscous effects, such as shock wave boundary layer inter-

ference separation. To furtherly research the influence of the constant viscosity 

assumption on the aerodynamic optimization design, the optimization bench-

mark CRM was carried out firstly with the constant viscosity assumption, then 

restarted with the viscosity variation in second stage. It was presented that the 

optimization results in second stage could furtherly improve the aerodynamic 

performance of the aircraft, demonstrating that the variation of the viscosity co-

efficient also had a significant effect on the shock-free region. From the as-

sessment above, the viscosity variation could significantly improve the accura-

cy in gradient computation, maintaining the computational stability and conver-

gence. Therefore, the assumption of constant viscosity was not suitable for the 

high-fidelity aircraft design.  

Keywords: Discrete Adjoint Method, Aerodynamic Optimization, Viscosity 

Variation, Gradient Accuracy. 

1 Introduction 

Intense market competition and severe operational requirements required continu-

ous improvement of the comprehensive performance of aircraft. Therefore, improving 

the performance of aircraft had always been the focus of aircraft design. Researchers 
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had made efforts to reduce each count of drag, and formed optimization design meth-

ods, such as surrogate model based optimization and gradient based optimization 

methods. In order to further improve the performance of aircraft, researchers had 

carried research on refined design methods for aircraft. The refined design of aircraft 

was a high-dimensional design problem. The optimization design system based on 

gradient had high efficiency in dealing with large-scale design variable problems, and 

the calculation amount of gradient based on adjoint method was almost independent 

of the number of design variables. The gradient of the objective function on the de-

sign variable could be quickly obtained by one control equation solving and one ad-

joint equation solving. Therefore, it had attracted much attention from researchers and 

had been widely applied in the fields such as aerodynamic[1, 2], structural[3, 4], sonic 

boom[5], electromagnetic[6, 7].  

In the aspect of aerodynamic design, researchers in various countries had deeply 

studied the aerodynamic gradient calculation method based on adjoint method, and 

formed a large number of aerodynamic adjoint optimization design systems. NASA 

had developed a discrete adjoint optimization system[8] based on the unstructured 

grid solver FUN3D; DLR had developed the discrete adjoint optimization systems 

based on the structured grid solver Flower and the unstructured grid solver TAU[9]; 

ONERA had developed a discrete adjoint optimization system[10] based on elsA; The 

team of Professor Martins from the University of Michigan developed the AD Flow 

discrete adjoint design system[11]. Zuo Yingtao, et al.[12] of Northwestern Polytech-

nical University established a discrete adjoint optimization design system based on N-

S equation; Li Bin, et al.[13] of China Aerodynamics Research and Development 

Center established the discrete adjoint system optimization design system based on 

unstructured grid solver; Huang Jiangtao et al.[2] established a discrete adjoint opti-

mization system of structured grid based on the large-scale parallel CFD code 

PMB3D developed by CARDC.  

The accuracy and robustness of aerodynamic adjoint method mainly depended on 

the inviscid term. Currently, the discrete adjoint systems mainly used the central 

scheme[2, 9, 10] on the inviscid term. However, there was a problem of insufficient 

robustness in a wide range of velocity domains. There also used upwind scheme on 

the inviscid term of adjoint equation[14], which had strong robustness in complex 

states. In the aerodynamic adjoint method, the viscous term was also an important 

part. When high-precision inviscid term was used in the adjoint equation, the treat-

ment of the viscous term determined the gradient accuracy. In the treatment of vis-

cous term, due to the variational treatment of viscosity coefficient was complex, the 

main discrete adjoint design systems[2, 9, 10] mostly adopted the constant viscosity 

assumption. or used the automatic differentiation[15] to derive simple turbulence 

model, with low calculation efficiency. In the context of refined aircraft design, in 

order to further improve the aerodynamic performance of the aircraft, the influence of 

the constant viscosity assumption on the gradient could not be ignored.  

Focused on the influence of flow viscosity on the adjoint field and gradient, based 

on the Sutherland criterion, Spalart Allmaras, and Menter's k-ω SST turbulence mod-

el, this article conducted research on viscosity coefficient variation, derived the aero-

dynamic adjoint equation of viscosity coefficient variation in discrete form, and cou-
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pled the viscosity coefficient adjoint to the adjoint optimization design system devel-

oped by the research group. On the optimization results of the cruise state of the CRM 

wing body which using the assumption of constant viscosity, the optimization design 

of viscosity coefficient variation was carried out, and the drag was further reduced, 

verifying the effectiveness of the method.  

2 Viscosity Coefficient Variation 

The typical flow field adjoint equation was as follows:  

 0TI 
+ =

 Q Q

R
  (1) 

where I was the design objective function, Q was the flow field conservation variable, 

and R was the residual of the flow field obtained by solving the N-S Equation. The 

point of the adjoint method was to perform variational treatment on the residual term 

of the flow field to obtain the left term of the adjoint equation:  

 T T Tc v 
= −

  Q Q Q

R RR
    (2) 

where Rc was the residual of the inviscid term in the flow field and Rv was the residu-

al of the viscous term. This article adopted the inviscid term[14] of the adjoint equa-

tion derived by the Van Leer scheme; In the viscous term, we usually used the as-

sumption of constant viscosity to simplify the complexity of the program, ignoring the 

influence of viscosity coefficient variation on the adjoint field. For viscous flow, the 

assumption of constant viscosity was sufficient to obtain good design results. In order 

to further improve the performance of the optimization design system and the aerody-

namic performance of the aircraft, this paper considered the influence of viscosity 

coefficient on the adjoint field and gradient. 

 

2.1 Viscous Term of Adjoint Equation Under the Assumption of 

Constant Viscosity Coefficient 

In curvilinear coordinates (ξ, η, ζ), the derivation in three directions had the same 

consistent form. When using the assumption of constant viscosity coefficient, the 

variation of viscosity term in the ξ direction was: 

 , , 1/2 , 1/2v i v i v i  + −= −R F F  (3) 

where: 

 

( ) ( )( ), 1/ 2 , , 1/2 1

, , 1/2 , , 1/2 1

1

1 1

,v i v l i i i

v l i v l ii i

i i

i i i i

 

 

+ + +

+ + +

+

+ +

=

  
= +

   

F F q Q Qq

F Fq q
Q Q

q Q q Q

 (4) 
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Therefore, the Eq. (4) could be written as: 

 

, , 1/2 , , 1/2 1

, 1

1 1

, , 1/2 , , 1/21

1

1 1

v l i v l ii i

v i i i

i i i i

v l i v l ii i

i i

i i i i

  

 

+ + +

+

+ +

− −−

−

− −

  
= + −

   

  
+

   

F Fq q
R Q Q

q Q q Q

F Fq q
Q Q

q Q q Q

 (5) 

In the above equation, there were three stencils that contribute to this cell, so there 

were seven stencils under three-dimensional condition. Multiplying the above equa-

tion by the adjoint variable λ and summing to obtain:  

 
( ) ( )

( ) ( )

, , 1, ,

, , 1, ,

, , ... , ,

, , , , ...

T T

i j k v i j k v

T T

i j k v i j k v

i j k i j k

i j k i j k

 

 

−

+

= + + +

+ +

 R R

R R

 

 
 (6) 

Merging the items that contain iQ : 

 ( ) ( ), 1/2 , 1/2

1 1( )

T T

v i v ii i

v i i i i

i i i i

− +

− +

     
= − + −   

      

F Fq q
R

q Q q Q
      (7) 

The viscous flux term of adjoint equation adopted the thin-layer approximation con-

sistent with the flow equation. The flux Jacobian matrix in the above equation had 

been given in reference[2], which would not be repeated in this paper.  

 

2.2 Viscosity Coefficient Variation 

Under the condition of the thin-layer approximation, the variation of viscous term 

could be written as follows:  

 

( )

( ) ( ) ( ) ( )
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1 , 2

1
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,
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1
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v n
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w n
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p
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 

 



  

 

 


   

  
 

 

   



  
  

+  
  +
  
  = +
  

   
+   −   

  + + +  

= + + +

F
 (8) 

where:  

 ( ) ( )1

1
0 0 0 0

1l

R

T

l l

Ll

M
heat p

Re JPr
 

 
   



   
= =     −    

Q
Q

①  (9) 
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 ( ) ( )1

1
0 0 0 0

1T

R

T

T T
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M
heat p
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 

 
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
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②  (10) 
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 
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 
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 (12) 

The assumption of constant viscosity actually ignored the first to third terms of the 

Eq. (8). In the calculation of flow field, the calculation of laminar viscosity coefficient 

was different from that of turbulence viscosity coefficient. The laminar viscosity coef-

ficient was directly calculated by using the total temperature of the cell-interface, 

while the turbulence viscosity coefficient was obtained by averaging the cell center 

values; In addition, the number of stencils involved in SA and SST model was differ-

ent. When only considering the variation of laminar viscosity coefficient:  

 ( ) ( )
, , 1/2 , , 1/2

, 1 1( ) l l

l

T T

v i v ii i
v i i i i

i i i i

 



− +

− +

     
= − + −   

      

F Fq q
R

q Q q Q
      (13) 

where:  

 ( )
, , 1/2 , 1/2

1/2 1/2

lv i l i

i i

i i

 + +

+ +

 
= 

 
① +③

F

q q
 (14) 

according to the form of the cell-interface laminar viscosity:  

 

( )

3
, 1/2 , 1/2 1/2 2

1/2

1/2 , 1/2

1/2

1

3 1 1
1 0 0 0 1

2

l i l i i

i i i i

i l i i i

i i

T C
T

T T C

T p
T C T

 

 

+ + +

+

+ +

+

     +
= =  

    + 

− 
+= − + 

q q q
 (15) 
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The boundary condition matrix treatment was consistent with the inviscid term, 

and the flux stencil of the boundary was shown in Fig. 1. In this paper, the starting 

and ending boundary of the grid were referred as ST_IN1 (2), ST_IN2 (3), ED_IN1 

(jmax), ED_IN2 (jmax - 1).  

 

Fig. 1 Flux stencil of the boundary 

Spalart-Allmaras Turbulence Model 

The left term of the adjoint equation obtained from the variation of viscosity coef-

ficient in the Spalart-Allmaras turbulence model was as follows:  

 ( ) ( )
, , 1/2 , , 1/2

, 1 1( ) T T

T

T T

v i v ii i
v i i i i

i i i i

 



− +

− +

     
= − + −   

      

F Fq q
R

q Q q Q
      (16) 

where: 

 ( )
, , 1/2 , 1/2

1/2 1/2

Tv i T i

i i

i i

 + +

+ +

 
= 

 
② +③

F

q q
 (17) 

according to the form of the cell-interface turbulence viscosity: 

 ( ) 1,, 1/2 , 1/2 ,

,

,

1
ˆ1 0 0 0 0

2

v iT i T i T i

T i i i i

ii T i i

f
v

  
  



+ +
    

+= =  
    qq q

 (18) 

where: 

 
( )

3 2 3
1, 1

3 3 2
3 3

1
1

3v i i i v i

i ii v
i v

f C

q C C

  

 

   
= = 

  +  +q q
 (19) 

 ( ),

, ,

,

ˆ1 0 0 0 0 ,
l ii i

l i i l i i

ii l i

v
 

   


 
+ −= − = 

  qq
 (20) 

Special attention should be paid to the wall boundary condition of the turbulence 

model, with ST_IN1 boundary as an example:  

 

( )

( )

, , 1/2 , , 1/21
,

1

, , 1/2

1

( ) T T

T

T

T

v i v ii i
v i

i i i i

T

v i i
i i

i i

 





− −−

−

+

+

   
= −+ 

    

 
+ − 

  

F Fq q
R

q Q q Q

F q

q Q

 

 

 (21) 
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Due to the forced setting of the turbulence viscosity coefficient to 0, it was directly 

treated as 
, , 1/2 0

Tv i i −  =F Q .  

Menter’s k-ω SST Turbulence Model 

Due to the direct use of vorticity ( )1 1, ,i i i i i− + = Q Q Q  in the calculation of vis-

cosity coefficient in the SST turbulence model, there were more stencils compared to 

the SA turbulence model. Therefore, the left term of the adjoint equation of the turbu-

lence model variation was:  

 

( ) ( )

( ) ( )

, , 3/2 , , 1/2

, 2 1 1

, , 1/2 , , 3/2

1 1 2

( ) T T

T

T T

T T

v i v ii i
v i i i i

i i i i

T T

v i v ii i
i i i i

i i i i

 



 

− −

− − −

+ +

+ + +

     
= − + − +   

      

     
− + −   

      

F Fq q
R

q Q q Q

F Fq q

q Q q Q

    

   

 (22) 

where:  

 ( )
, , 1/2 , 1/2

1/2 1/2

Tv i T i

i i

i i

 + +

+ +

 
= 

 
② +③

F

q q
 (23) 

according to the form of the cell-interface turbulence viscosity: 

 

, 3/ 2 , 3/2 , 1

, 1

, 1/2 , 1/2 , 1 , 1/2 ,

, 1 ,

, 1/2 , 1/2 , , 1/2 , 1

, , 1

, 3/2 , 3/2 , 1
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T i T i T i T i T i

i T i i T i i

T i T i T i T i T i

i T i i T i i

T i T i T i

i T i

  



    

 

    

 

  



− − −

−

− − − −

−

+ + + +

+

+ + +

+

  
=

  

    
= +

    

    
= +

    

  
=

  

q q

q q q

q q q

q iq

 (24) 

Based on the above analysis, the variation of turbulence viscosity coefficient need-

ed to treat the follow parts:  

 
, , ,

1 1

T i T i T i

i i i

  

− +

  

  q q q
 (25) 

Due to the piecewise functions in the calculation of turbulence model, it was nec-

essary to take derivatives for all parts and select the corresponding parts which was 

based on the calculation results of the turbulence model for iteration. In the flow field 

calculation, the ghost grid information exchanged directly by communicating the 

viscosity coefficient of the cells in other blocks, rather than the selection of the 
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piecewise function of the cells in other blocks. Therefore, in the adjoint equation cal-

culation, it was necessary to pre-calculate a step before the iteration to communicate 

the selection of the cells in other blocks. Due to the complexity of the treatment, this 

article only took the selection of the minimum value as an example, and the selection 

of the minimum value was represented by - - -kw sst min selection , where: 

 
1

2

1,

- - -

2,

T

T

k

kw sst min selection
a k Re

F M












=


= 

 
 =  
   

 (26) 

when - - - 1kw sst min selection = :  

 ( )

,

1

,

,

,

1

0

1 0 0 0 0

0

T i

i

T i

T i i

i

T i

i




 



−

+


=




= −




=



q

q

q

 (27) 

when - - - 2kw sst min selection = :  

 ( )

,

,

1 1

, 2,

, , ,

2,

,

,

1 1

1

1 1
1 0 0 0 0

1

T i i

T i

i i i

T i ii

T i i T i T i

i i i i i

T i i

T i

i i i

F

F





   




− −

+ +

 −
=

  

 − −
= − + +

   

 −
=

  

q q

q q q

q q

 (28) 

where ( )2 2 2

1 2 3 , ,J Ju v w   = + + = rot , further derivation would not be re-

peated.  

In the treatment of boundary conditions, the SST model was similar to the inviscid 

term that based on the Van Leer scheme. However, due to the fact that the cell center 

vorticity was only related to three cells, and in a direction such as the ξ direction, the 

forward and backward flux of the inviscid term of a single cell were related to a total 

of five cells. Therefore, the boundary treatment of the SST model was actually sim-

pler than that of the inviscid term based on the Van Leer scheme, and only ST_IN1 

needed to be treat.  
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3 Research on the Variational Effect of Viscosity 

Coefficient 

3.1 The Influence on Adjoint Equation and Gradient Accuracy: 

In this section the influence of viscosity coefficient variation on the adjoint equa-

tion calculation and gradient accuracy was studied. The FFD approach[16] based on 

NURBS basis function was used for wing parameterization. The shape and FFD lat-

tice of ONERA M6 were shown in Fig. 2. There were 70 design variables in total, 5 

sections were arranged along the span, and 7 design variables were arranged on the 

upper and lower surfaces of each section in the streamwise. The design variables used 

in gradient validate were the root section design variables. 

 

Fig. 2 FFD Lattice and Design Variables 

The calculation condition was Ma=0.84, Re=6.8×106, CL=0.2452. Due to the fact 

that the calculation of laminar viscosity coefficient was independent of the turbulence 

model and the variation of laminar viscosity coefficient was simple, the influence of 

only considering the variation of laminar viscosity coefficient was not carried out. 

The influence of the variation of turbulence model shown in Fig. 3 and Fig. 4 actually 

included the variation of laminar viscosity coefficient, and the variation of turbulence 

model in the following text all include the variation term of laminar viscosity coeffi-

cient.  

The convergence of the adjoint equation showed that the variation of viscosity co-

efficient had a small influence on the robustness of the adjoint equation. This was 

different from the conclusion of reference[15]. The gradient comparisons showed that 

the variation of viscosity coefficient had a certain influence on the gradient accuracy. 

Due to the large influence of disturbance step on finite difference, it was not used as a 

reference here. The influence of the viscosity coefficient variation to the gradient 

corresponding to the two turbulence models was relatively consistent when compared 

to the fixed viscosity coefficient. Variables 8 to 14 were on the upper surface, where 

there were supersonic flow and shock boundary layer interference separation, and the 

flow viscosity had a great influence on the it; Variables 1 to 7 were on the lower sur-
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face, where the flow were relaxation and influence of viscosity coefficient variation 

was small, which was consistent with the flow. 

  

Fig. 3 Influence of SA turbulence model variation on the convergence of adjoint equations and 

gradient accuracy 

  

Fig. 4 Influence of SST turbulence model variation on the convergence of adjoint equations and 

gradient accuracy 

3.2 Influence on the aerodynamic optimization design 

In this section a study on the influence of viscosity coefficient variation on optimi-

zation design was conducted. The initial states were the cruise state optimization re-

sults of the CRM wing body under the assumption of constant viscosity. The optimi-

zation design model was shown in the equation:  
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The initial value of the viscosity coefficient variation optimization design for SST 

turbulence model was x62, and x23 for SA turbulence model.  

(1) Menter's k-ω SST Turbulence Model 

The convergence of the viscosity coefficient variation optimization design of the 

SST turbulence model was shown in Fig. 5, and the optimization design met the con-

vergence requirements at step 86. The pressure drag of step 62 was 148.8 counts and 

148.1 counts when stop, with a decrease of 0.7 count, indicating that there was still 

some optimization space for the optimization problem of the cruise state under the use 

of the viscosity coefficient variation method in this article, which could further im-

prove the cruise performance.  

 

Fig. 5 Optimize convergence history 

The comparison of pressure distribution was shown in Fig. 6, and the sectional 

pressure coefficient distribution was shown in Fig. 7. The black color represented the 

constant viscosity optimization result, while the red color represented the viscosity 

variation optimization result. The pressure distribution was smoother when consider-

ing the viscosity coefficient variation, which further reducing the pressure drag.  
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Fig. 6 Pressure distribution of x62 (left) and x86 

(right) 

 

Fig. 7 Sectional pressure coefficient distribu-

tion of x62(black) and x86(red) 

(2) Spalart Allmaras Turbulence Model 

The convergence of the viscosity coefficient variation optimization design of the 

SA turbulence model was shown in Fig. 8, and the optimization design met the con-

vergence requirements at step 41. The pressure drag of step 23 was 155.5 counts and 

154.3 counts when stop, with a decrease of 1.2 count, verifying the design potential of 

the viscosity coefficient variation method. 

 

Fig. 8 Optimize convergence history 

The comparison of pressure distribution was shown in Fig. 9, and the sectional 

pressure coefficient distribution was shown in Fig. 10. The weak shock wave intensity 

at kink position of the wing was smaller when considering viscosity coefficient varia-

tion, and the pressure difference drag was lower.  
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Fig. 9 Pressure distribution of x23 (left) and x41 

(right) 

 

Fig. 10 Sectional pressure coefficient distribu-

tion of x23(black) and x41(red) 

4 Conclusion 

In this article the aerodynamic adjoint method with the variation of viscosity coef-

ficient was established based on Spalart-Allmaras and Menter's k-ω SST turbulence 

model. The aerodynamic adjoint method with the variation of viscosity coefficient 

was analyzed by using M6 wing case to demonstrate its robustness and influence on 

gradient; The optimization performance of this method was tested by the CRM wing-

body optimization cases, and the conclusions were as follows:  

(1) The viscosity coefficient variation had little influence on the robustness of ad-

joint equation and the accuracy of gradient.  

(2) The aerodynamic adjoint method with the variation of viscosity coefficient es-

tablished in this article could further improve the performance of aircraft optimization 

design. The variation of viscosity coefficient in both turbulence models could im-

prove aircraft cruise performance.  

(3) The aerodynamic adjoint method that considering the variation of viscosity co-

efficient laid the foundation for the optimization design of laminar flow, which was 

also the research to be carried out in the future.  
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