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Abstract. Numerical noise is an unavoidable by-product of Computational Fluid 

Dynamics (CFD) simulations, which bring challenges to optimizations. In the 

former work, we have proposed the ε-kriging model that can adaptively filter the 

numerical noise in the sample data by adding the insensitive factor (ε) of a sup-

port vector regression (SVR) model to the diagonal of the correlation matrix of a 

kriging model. Here we aim to develop the surrogate optimization method based 

on it for tackling the problems with noisy evaluations. The infilling criterion is 

developed to guide global optimization. It is compared with the classical kriging 

based optimization for couples of benchmark problems varying nonlinearity and 

dimension, with noise of low, medium and high intensity. The results show that 

our method successfully converged to the global optimums no matter how strong 

the numerical noise is. Drag minimization of NACA0012 airfoil also obtained 

satisfactory results. The results indicate that our method is effective and robust 

for optimizations affected by noise. 
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1 Introduction 

During the past two decades, the efficient global optimization method (EGO) [1-4] 

based on kriging model and expected improvement (EI) has gained a great attention in 

engineering design optimizations [5,6]. Though widely applied, numerical noise [7-10] 

still a hindrance, so that the researchers put much effort on developing an EGO method 

to identify the global optimum in the optimizations with noisy evaluations [11-16]. 

Due to the numerical noise, Giunta et al. [17] encountered convergence problems in 

aerodynamic design of a high-speed civil transport aircraft (HSCT), in which the opti-

mization process was trapped into local minima. Shy et al. [18] and Burman et al. [19] 

had to cope with numerical noise in their researches too. Forrester et al. [20] explored 

the source of numerical noise in aerodynamic design of airfoils and figured out that 

discretization error, incomplete convergence and inaccurate applications of boundary 

conditions were the main reasons. Gilkeson et al. [21,22] conducted series of CFD sim-

ulations of a generic road vehicle and then demonstrated that the numerical noise is a 

result of interaction between the turbulence model and the grid type. Our research group 

[23] explored the physical mechanism and observed that numerical noise was generated 

in airfoil and wing optimizations, then concluded that mesh-quality discrepancy of 
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different geometries might lead to small truncation error shown as low-level numerical 

noise, while incomplete convergence is most likely encountered in the complex flow 

condition such as transonic buffet and drag divergence, which incurs high-level numer-

ical noise that must have critical impact on optimizations. We also found that low-boom 

design of a supersonic transport was probably interfered by the numerical noise [24]. 

It is common to account for “noise” in the data by adding a regularization factor to 

the main diagonal of the correlation matrix of an ordinary kriging model, which is called 

“nugget-effect” kriging model that is the term from geo-statistics [25], and this regu-

larization factor is called nugget. In the case of noisy data, nugget should be valued 

proportional to the noise variance. Cressie [25] valued nugget as the ratio of the noise 

variance to the process variance. Yin et al. [26-28] extended this method to handle the 

heteroscedastic variance case by varying the nugget with the sample location. Forrester 

[20] proposed to optimize nugget together with the hyperparameters of a kriging model 

and applied it to an airfoil aerodynamic optimization problem interfered by numerical 

noise. Sakata et al. [29,30] added the nugget into the response of the samples, then 

derived a new noise-filtering kriging model, ns-kriging. Chen et al. [31] proposed to 

value the nugget with the variance of the support vectors obtained by SVR. Bostanabad 

and Chen et al. [32] analyzed impact of the nugget on the log-likelihood function and 

proposed adaptively adjusting nugget in the modeling process to simultaneously filter 

noise and improve prediction performance. Though some research about noisy optimi-

zation has been studied based on “nugget-effect” kriging model, there is still room for 

improvement on construction of the model and optimization method. The objective of 

this article is to develop a surrogate optimization method based on ε-kriging [33] model 

which could adaptively filter the noise, for the optimizations with noisy evaluations.  

The paper is organized as follows: Section 2 briefly introduces the theory of the ε-

kriging model; Section 3 proposed a primary optimization framework based on it; Sec-

tion 4 show the validation results via analytical test functions and an airfoil aerody-

namic design case.  

2 Background formulation of ε-Kriging model 

Given a training data set 𝑫 = (𝑿S, 𝒀S) = {(𝒙(𝑖), 𝑦(𝑖))|𝑖 = 1,2, ⋯ , 𝑛}, where 𝒙(𝑖) ∈ ℝ𝑚 

denotes the input vector and 𝑦(𝑖) is its corresponding response (𝑦(𝑖) = 𝑓(𝒙(𝑖)) + 𝑠𝑖). It is 

assumed that the noise in the sample data is homoscedastic and 𝑠𝑖~𝑁(0, 𝜎𝑠
2).  

Assume a random process 𝑌(𝒙) corresponding to the unknown function. 

 0( ) ( )Y Z= +x x  (1) 

where 𝛽0 is an unknown constant that depicts the global trend, and 𝑍(𝒙) is defined as 

a stationary random process. 

Inspired by the ε-tube of SVR which is favored due to good capability of filtering 

numerical noise, we proposed to value the nugget factor [25] by the insensitive factor 

(ε) and call it ε-kriging model [33]. The linear regression function 𝑓(𝒙) = 〈𝒘 ∙ 𝒙〉 + 𝑏 

of ε-SVR is constructed to deviate least from the training set according to Vapnik’s ε-
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insensitive loss function [34] 
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while at the same time is as “flat” as possible (i.e., ‖𝒘‖ is as small as possible). Math-

ematically, this means 
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where 
*( , )i i   indicates that the model allows some exceptions and the constant 𝐶(𝐶 > 0) 

controls the tradeoff between complexity of the model and deviations larger than ε. A 

key assumption of this formulation is that there exists a function 𝑓(𝒙) that can approx-

imate all pairs of (𝒙𝑖 , 𝑦𝑖) in ε precision by a so-called “ε-tube” or “ε-insensitive zone”. 

In a linear case, the ε-tube and the insensitive loss function is shown in Fig. 1. By map-

ping 𝒙 to 𝒛 = 𝜓(𝒙) in a feature space via a nonlinear map 𝜓 (kernel function), any non-

linear function can be modeled. 

 

a) ε-tube in the sample space     b) ε-insensitive loss function 

Fig. 1. ε-tube and error allowance of the ε-SVR (samples in a red circle: support vectors) 

The parameter ε controls width of the ε-tube. The ε-tube covers most of the samples 

with “normal” noise (𝒙~𝑁(0, 𝜎𝑠
2)) (inside or on the border of the ε-tube), while allow-

ing for some exceptions outside it (like the “bad points” occasionally happened in the 

numerical simulations). ε-Kriging takes ε as the nugget factor to be added to the diag-

onal of the correlation matrix of the kriging model. The optimal ε is obtained adaptively 

via our in-house SVR code [35], and the details of it would be found in [33] 

Then the ε-kriging model is built based on data set 𝑫, and the prediction of the func-

tion 𝑦(𝒙) at any untried point x can be written as  
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where 𝛽𝜀0 = (𝑭T𝑹𝜀
−1𝑭)−1𝑭T𝑹𝜀

−1𝒀S, and the column vector 𝑉𝜀 Krig is a product of the 

given samples, so it can be stored for the subsequent predictions; 𝑭 ∈ ℝ𝒏 is the column 

vector of each element being 1, 𝑹𝜺 is the correlation matrix in which each element is 

the correlation function product of two samples. where 𝑟(∙) is the spatial correlation 

function, which is only dependent on the spatial distance between two samples. 
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3 Optimization based on ε-Kriging and EI method 

Based on the ε-kriging method, this work aims to priliminarily develop an optimization 

framework to solve the optimization problem with noisy responses below. 
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where 𝑦(𝒙) and 𝑔𝑖(𝒙) denote the objective and constraint functions, 𝑁𝑐 is the number 

of constraint functions, and the test functions of this paper are unconstrainted; 𝒙𝑙𝑜𝑤  and 
𝒙𝑢𝑝 are the lower and upper bounds of the design variables 𝒙.  

Any function in Eq.(6) that is probably affected by noise would be modeled by the 

ε-kriging method. Then the EI infilling criterion is used to add the new samples to 

improve the modeling accuracy as well as guide to the global optimum, and the ε-

kriging models are repetitively updated until the convergence criteria are reached. The 

optimization framework is shown in Fig. 2. The main steps are described as follows: 

1) The initial samples are generated by the DoE method (such as the Latin hypercube 

sampling (LHS)) and their responses are are solved via the high-fidelity analysis tools 

such as Renolds-averaged Navier-Stokes (RANS) equations. 

2) The optimal hyperparameter ε is obtained via training the SVR model in which 

its hyperparameters are optimized by minimizing the generalization error of the model. 

The generalization error can be estimated by the cross validation (CV) method or the 

leave-one-out (LOO) bound method. The optimizers including Genetic Algorithms 

(GA), Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and Bayesian Op-

timization (BO) are optional for the hyperparameter optimization. 
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3) The optimal hyperparameters of SVR (ε) is added to the diagonal of the correla-

tion matrix, subsequently the kriging modeling module of the in-house SurroOpt [36] 

code will be called to build the ε-kriging model. 

4) The locations of the new samples are generated by maximizing the EI function 

via the built-in optimization methods (GA, Hooke&Jeeves, BFGS or the combined 

method of them), and the resoponse(s) are evaluated. 

5) The new samples are infilled to the data set “D" and then the ε-kriging models are 

re-trained. The steps 2)–5) are repeated until the termination condition is satisfied. 

 

 

Fig. 2. Flowchart of optimization based on developed ε-kriging and EI method 

The infilling criterion has critical impact on optimal efficiency and results. Here the 

EI criterion [1] is investigated to see what happens to it when the noise exists. Assume 

that the prediction of ε-kriging model at any untried site x obeys a normal distribution 

𝑌̂(𝒙)~𝑁[𝑓(𝒙), 𝑠2(𝒙)] , where the mean is the surrogate prediction 𝑓(𝒙)  and the 

variance 𝑠2(𝒙) is the corresponding MSE [15]. Then the statistical improvement at any 

untried location observed so far 𝑦𝑚𝑖𝑛 is defined as: 

 ( ) ( )( )min
ˆmax ,0I y Y= −x x  (7) 

Then the function of EI can be written as 
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where 𝛷  and 𝜙  are the cumulative distribution function and probability density 

function of standard normal distribution, respectively. Then a new sample point is 

obtained by solving the following sub-optimization problem: 

 arg max ( )
l u

new
EI

 

=
x x x

x x  (9) 

The noise of 𝑁(0, 1.22) is added to the function in Eq.(10) to investigate the effect 

of noise on the EI function. The noise standard variance is 25% of the function standard 

variance. 10 samples are generated using the LHS method to establish the initial model, 

then the EI criterion is adopted to infill the new samples. Fig. 3 shows the EI function 

changes in the first 6 iteration steps. It is shown that, the new sample is exactly infilled 

to the maximum-EI location, and the maximum EI-value decreases to nearly zero in 

only a few steps. The proposed method based on the noisy samples converges as well 

as the ordinary kriging-based optimization based on the corresponding noise-free 

samples, which indicates its effectiveness. 

 2( ) (6 2) sin(12 4)f x x x= − −  (10) 

 
a) Step 1 b) Step 2 c) Step 3 

 
d) Step 4 e) Step 5 f) Step 6 

Fig. 3. The influence of noise on the EI criterion 
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The ε-kriging model and the aforementioned EI method have been integrated to an 

in-house optimization code called SurroOpt [36]. In next section, SurroOpt will be 

employed to run the numerical examples whose responses are interfered by noise. Then 

we will demonstrate the developed method with benchmark aerodynamic shape 

optimization which has noisy evaluation. In all of these examples, two different 

optimization methods will be compared: kriging based optimization; ε-kriging based 

optimization. To conduct a fair comparison, all the settings excluding the choice of 

surrogate models will be kept the same. 

4 Numerical examples 

4.1 Analytical test functions 

The function in Eq.(11) is used to demonstrate the peformance of ε-kriging based 

optimization. Fig. 4 shows the infill sampling process, Fig. 5 shows the convergence 

history of optimization of kriging and ε-kriging based optimization method under 

different noise levels. It can be seen that ε-kriging based optimization can efficiently 

find the global optimal region in the noisy design space, and the process of infill 

sampling more accurate. 

 

2
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a) infill sampling of kriging based optimization (global optimum: red triangle) 

 
b) infill sampling of ε-kriging based optimization (global optimum: red triangle) 

Fig. 4. Infill sampling of surrogate model based optimization under different noise levels (noise 

level from left to right: 5%, 25%, 50% of the function standard variance) 
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a) convergence history of kriging based optimization 

 
b) convergence history of ε-kriging based optimization 

Fig. 5. Convergence history of surrogate model based optimization under different noise levels 

(noise level from left to right: 5%, 25%, 50% of the function standard variance) 

Besides, the peformance of ε-kriging based optimization have been researched on 

some numerical examples, whose response have the numerical nosie. We used some 

benchmark problems in order to test the performance of the algorithm (in Table 1). This 

set could include many different kinds of problems such as unimodal, multimodal, 

regular, irregular, separable, non-separable and multi-dimensional. The definition of 

function characteristics can be found in the literature [37]. In some functions, global 

minima is very small when compared to whole search space (Michalewicz) and so on. 

In Table 1 characteristics of each function are given under the column titled C. Noting 

the original functions have been rescaled to map their search space to [0, 1]d, and 

measure optimization results impartial.  
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Table 1. Formulation of the benchmark functions 

No Range C Function Formulation 

1 [0,1] MS Forrester 2( ) (6 2) sin(12 4)y x x x= − −  

2 [0,1]2 MS Branin-Hoo 

2
2

1 1
2 12

1 1 2 2

1 5.1 5 10
( ) 6 10 cos( ) 44.81

51.95 4 8

  15 5, 15

x x
y x x x

where x x x x
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= − =
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= − + + + − +

= − = −

 

4 [0,1]2 MN GoldStein-

Price 

(

)

2 2 2

1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

1
( ) log 1 ( 1) (19 14 3 14 6 3 )

2.427

30 (2 3 ) (18 32 12 48 36 27 ) 8.693
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5 [0,1]2 MS Michalewicz 
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d
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= = =
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6 [0,1]4 MN Hartmann4 
4 4

2

1 1

1
( ) 2.58 exp ( )

1.94

[ ]

10.00 0.05 3.00 17.00
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 

C

a

0.1312  0.2329  0.2348  0.4047

0.1696  0.4135  0.1451  0.8828

0.5569  0.8307  0.3522  0.8732

0.0124  0.3736  0.2883  0.5743

0.8283  0.1004  0.3047  0.1091

0.5886  0.99

 

 14.00 91  0.665

 
 
 
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7 [0,1]6 MN Hartmann6 
4 6

2

1 1

1
( ) 2.58 exp ( )

1.94
i ji j ji

i j

y x C a x p
= =

  −
= + − −  

   
   

#M: means that the function is multimodal 

#U: means that the function is unimodal 

#S: means that the function is separable 

#N: means that the function is non-separable 

To get a better ε, 10d (d is the dimension) initial samples are chosen by the LHS 

method to build an initial ε-kriging model for the objective function. Then the EI infill-

ing criterion is used to repetitively generate new samples to update the ε-kriging model, 

until the global optimum is found.  

For reducing the impact of randomness on optimization, every function has been 

optimized 20 times. We use the assessment EX (gap of optimal location and optimized 

location) and EY (gap of optimal value and optimized value) [38] to messure the 

optimization quality, from two aspects reflcting the peformance of optimization. The 

box plots of the EX and EY are shown in Fig. 6, in which the median is the mean value 

of all of the 20 results. The results show that, 

1) The average EX, EY(solid triangle in the box plots) and robustness of ε-kriging 

based optimization method is better than the kriging based optimization. It is indicated 

that the ε-kriging based optimization could filter the nosie in the process of optimization 

on different noise levels, to a certain extent.  
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2) With 5 % noise all the average results of both optimization methods are very close 

to the actual optimum, because the existence of assessment EX and EY equal to zero in 

this case. It is showed that low intensity noise almost no impact on the surrogate model 

based optimization. With 25% and 50% noise the ε-kriging based optimization method 

could identify the minima of function with precision, better than the kriging based 

optimization method. 

3) There are some functions fail to optimize because the value of EX and EY is very 

high(such as Goldstein-Price, indeed the basin of the global minimum is relatively 

small and was not found for several runs). Besides, with the intensity noise increacing, 

the performance of kriging based optimization method reduce dramatically, but the ε-

kriging based optimization method could alleviate the fall trend, especially in the 

function Michalewicz and Six Hump Camel. 

 

 
a) Optimization for Forrester function (No.1) 

 
b) Optimization for Branin-Hoo function (No.2) 

 
c) Optimization for Six Hump Camel function (No.3) 

 



11 

 
d) Optimization for Goldstein-Price function (No.4) 

 
e) Optimization for Michalewicz function (No.5) 

 
f) Optimization for Hartmann4 function (No.6) 

 
g) Optimization for Hartmann6 function (No.7) 

Fig. 6. The EX and EY box-plots of different test functions (left: the assessment EX, right: the 

assessment EY) 

4.2 Drag minimization of NACA0012 airfoil in transonic flow 

One representative example will be used to demonstrate the application of the de-

veloped method to aerodynamic shape optimizations. The benchmark problem defined 

by the AIAA aerodynamic design optimization discussion group (ADODG) [39], which 
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is the drag minimization of a NACA0012 airfoil, subject to a full thickness constraint. 

The airfoil is optimized at a freestream Mach number 0.85 and zero angle of attack in 

inviscid flow. It can be written as an optimization problem: 

 

min   

. .  0

      [0,1]

d

l

baseline

C

s t C

y y x

=

  

 (12) 

where 𝑦 ≥ 𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 means that the local thickness must always larger than one of the 

baseline, along the airfoil from the leading edge to the trailing. The modified airfoil 

features zeros thickenss at trailing edge: 

 
2 3 40.6(0.2969 0.1260 0.3516 0.2843 0.1036 )baseliney x x x x x=  − − + −  (13) 

The parameterization method of the airfoil is sixteen-order CST [40] method, so the 

number of design variables is 17 in total. We force the airfoil is always symmetric and 

the lift coefficient is zero at zero angle of attack. The design space is defined by 

expanding the initial CST coefficients by 1.5 times and narrowing it by half (in Fig. 7): 

 [0.5 ,1.5 ]base basex x x  (14) 

where 𝒙𝑏𝑎𝑠𝑒  denotes the baseline shape. 

 

      

Fig. 7. Baseline airfoil and definition of design sapce Fig. 8. Sketch of C-grid for airfoil 

optimization 

A special technique called conformal transformation is employed to generate the C-

type grid of airfoil to guarantee good uniformity and orthogonality, and the structural 

grid used for optimization has 512 points in the stream-wise direction and 256 points 

in the direction normal to the airfoil surface, as Fig. 8 sketches. Here, an in-house flow 

solver PMNS2D [39] is employed to perform flow simulation. To start optimization 

process, LHS method is used to generate 50 samples to construct initial ε-kriging and 

kriging model, then infilling criterion is employed to refine the model, and 4 samples 

are infilled per cycle. The optimization are terminated when the total number of CFD 

evaluations reaches 200. In the optimization, it should be noted that there is numerical 

error in the artificial dissipation which is the source of the noise[20]. 
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The convergence histories are shown in Fig. 9, and the ε-kriging based method 

perform better than the kriging based method optimization. The comparison of the 

baseline and optimized airfoils’ aerodynamic force coefficients are shown in Table 2, 

and the aerodynamic force coefficients of optimial airfoil are evaluated with noiseless 

method. It can be observed that the drag of ε-kriging based method is reduced by 

43.85%, better than kriging based method, the constraints are strictly satisfied, and the 

time consuming almost identical. 

  

Fig. 9. The convergence histories of optimizing NACA0012 airfoil using kriging and ε-kriging 

based methods 

Table 2. Optimization results for NACA0012 

 Cd(counts) Reduction of Cd (%) Time(h) 

Baseline airfoil 473.64 / / 

kriging based method 281.51 40.56 25.77 

ε-kriging based method 265.96 43.85 25.96 

The comparison of geometric shapes, pressure coefficient distributions, and pressure 

contour of the baseline and the optimal airfoils are shown in Fig. 10 and Fig. 11 

respectively. It could be seen that both the leading and trailing edges of optimal airfoils 

are much thicker than the baseline airfoil, and the shock waves are largely reduced. The 

final design result still has a strong shock wave, because the shape of leading and 

trailing edges has reached the boundary of the design and better design may be located 

outside the design space. 

 

Fig. 10. Comparison of the shapes (left) and pressure distributions (right) for baseline and 

optimized airfoils 
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a) baseline b) kriging based method c) ε-kriging based method 

Fig. 11. Comparison of pressure coefficient contours for baseline and optimized airfoils 

5 Conclusion 

In this paper a method termed as ε-kriging based optimization is developed and 

preliminarily validated to filter out the noise in the response during identifying the 

optimum in the optimization. The core of the developed method is to introduce the ε-

insensitive loss of a SVR model into the diagonal of kriging correlation matrix. This 

method is verified by a numerical example and applied to an aerodynamic shape 

optimization of minimizing the drag of NACA0012 airfoil in transonic flow. The results 

indicate that the optimization accuracy and robustness is dramatically improved 

compared to classic kriging, which confirms that the developed method has a great 

potential for applications on the problem which the evaluation is interfered by noise. 
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